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Rigid Body Transformations
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Homogeneous Representation
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 translation represented by a vector  d

 vector addition

 rotation represented by a matrix  R

 matrix-matrix and matrix-vector multiplication

 convenient to have a uniform representation of translation 

and rotation

 obviously vector addition will not work for rotation

 can we use matrix multiplication to represent translation?



Homogeneous Representation
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 consider moving a point  p by a translation vector  d
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not possible as matrix-vector multiplication always leaves the origin unchanged



Homogeneous Representation
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 consider an augmented vector ph and an augmented matrix D
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Homogeneous Representation
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 the augmented form of a rotation matrix  R3x3
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Rigid Body Transformations in 3D
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Rigid Body Transformations in 3D
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 suppose {1} is a rotated and translated relative to {0}

 what is the pose (the orientation and position) of {1}

expressed in {0} ?
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Rigid Body Transformations in 3D
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 suppose we use the moving frame interpretation (postmultiply

transformation matrices)

1. translate in {0} to get {0’}

2. and then rotate in {0’} to get {1}
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Rigid Body Transformations in 3D
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 suppose we use the fixed frame interpretation (premultiply

transformation matrices)

1. rotate in {0} to get {0’}

2. and then translate in {0} in to get {1}

d

{0}

R

{0}

{0’}

{0’}

{1}

Step 1

Step 2

RD



Rigid Body Transformations in 3D
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 both interpretations yield the same transformation
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Homogeneous Representation
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 every rigid-body transformation can be represented as a 

rotation followed by a translation in the same frame

 as a 4x4 matrix

where R is a 3x3 rotation matrix and d is a 3x1 translation vector
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Homogeneous Representation

1/12/201712

 in some frame i

 points

 vectors
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Inverse Transformation
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 the inverse of a transformation undoes the original 

transformation

 if

 then
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Transform Equations
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Transform Equations
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 give expressions for:
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Transform Equations
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Transform Equations
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 how can you find
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