Day 04

Rigid Body Transformations

- translation represented by a vector d
 - vector addition
- rotation represented by a matrix R
 - matrix-matrix and matrix-vector multiplication
- convenient to have a uniform representation of translation and rotation
 - obviously vector addition will not work for rotation
 - can we use matrix multiplication to represent translation?

• consider moving a point p by a translation vector d

$$p+d = \begin{bmatrix} p_x \\ p_y \\ p_z \end{bmatrix} + \begin{bmatrix} d_x \\ d_y \\ d_z \end{bmatrix} = \begin{bmatrix} p_x + d_x \\ p_y + d_y \\ p_z + d_z \end{bmatrix}$$

$$? \qquad \begin{bmatrix} p_x \\ p_y \\ p_z \end{bmatrix} = \begin{bmatrix} p_x + d_x \\ p_y + d_y \\ p_z + d_z \end{bmatrix}$$

not possible as matrix-vector multiplication always leaves the origin unchanged

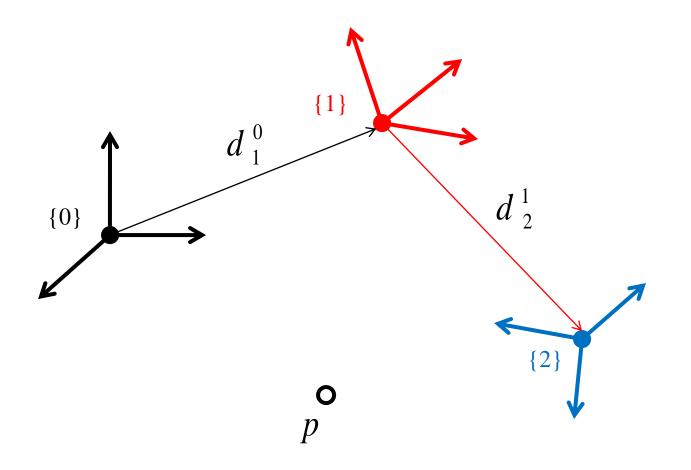
 \blacktriangleright consider an augmented vector p_h and an augmented matrix D

$$p_{h} = \begin{bmatrix} p_{x} \\ p_{y} \\ p_{z} \\ 1 \end{bmatrix} \qquad D = \begin{bmatrix} 1 & 0 & 0 & d_{x} \\ 0 & 1 & 0 & d_{y} \\ 0 & 0 & 1 & d_{z} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

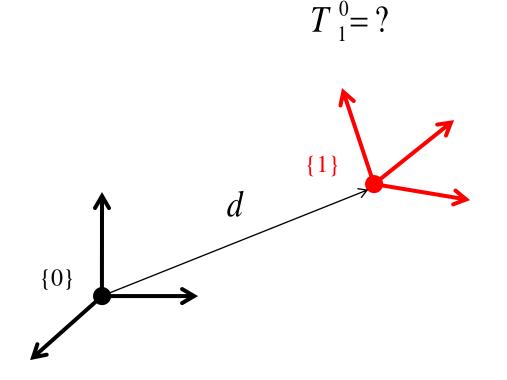
$$Dp_{h} = \begin{bmatrix} 1 & 0 & 0 & d_{x} \\ 0 & 1 & 0 & d_{y} \\ 0 & 0 & 1 & d_{z} \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} p_{x} \\ p_{y} \\ p_{z} \\ 1 \end{bmatrix} = \begin{bmatrix} p_{x} + d_{x} \\ p_{y} + d_{y} \\ p_{z} + d_{z} \\ 1 \end{bmatrix}$$

• the augmented form of a rotation matrix R_{3x3}

$$R = \begin{bmatrix} R_{3x3} & 0 & 0 \\ R_{3x3} & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
$$Rp_{h} = \begin{bmatrix} R_{3x3} & 0 & 0 \\ R_{3x3} & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} p_{x} \\ p_{y} \\ p_{z} \\ 1 \end{bmatrix} = \begin{bmatrix} R_{3x3} p \\ 1 \end{bmatrix}$$



- suppose $\{1\}$ is a rotated and translated relative to $\{0\}$
- what is the pose (the orientation and position) of {1} expressed in {0} ?



{0'}

 suppose we use the moving frame interpretation (postmultiply transformation matrices)

{0}

Step 2

 $D_{0'}^0 R_1^{0'}$

{0'}

{1

d

1. translate in $\{0\}$ to get $\{0'\}$

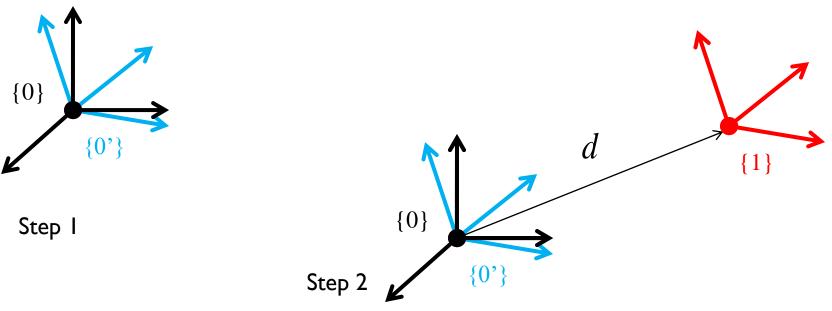
d

2. and then rotate in $\{0'\}$ to get $\{1\}$

{0}

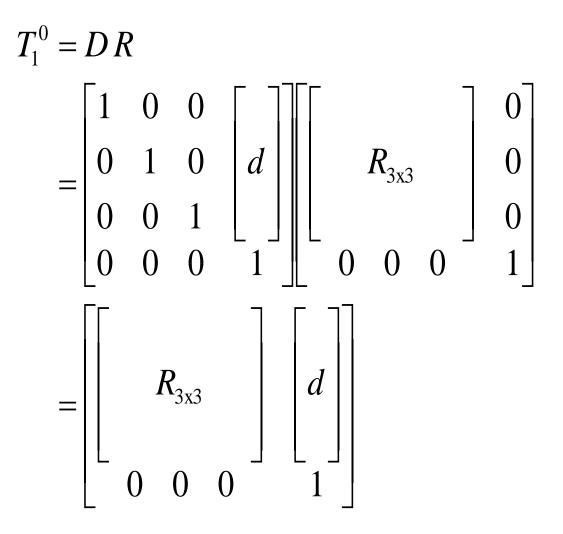
Step I

- suppose we use the fixed frame interpretation (premultiply transformation matrices)
 - I. rotate in $\{0\}$ to get $\{0'\}$
 - 2. and then translate in $\{0\}$ in to get $\{1\}$ DR



R

both interpretations yield the same transformation



- every rigid-body transformation can be represented as a rotation followed by a translation in the same frame
 - ▶ as a 4x4 matrix

$$T = \begin{bmatrix} R & d \\ 0 & 0 & 0 \end{bmatrix}$$

where R is a 3x3 rotation matrix and d is a 3x1 translation vector

- ▶ in some frame *i*
 - points

$$P^{i} = \begin{bmatrix} p^{i} \\ 1 \end{bmatrix}$$

vectors

$$V^{i} = \begin{bmatrix} v^{i} \\ 0 \end{bmatrix}$$

Inverse Transformation

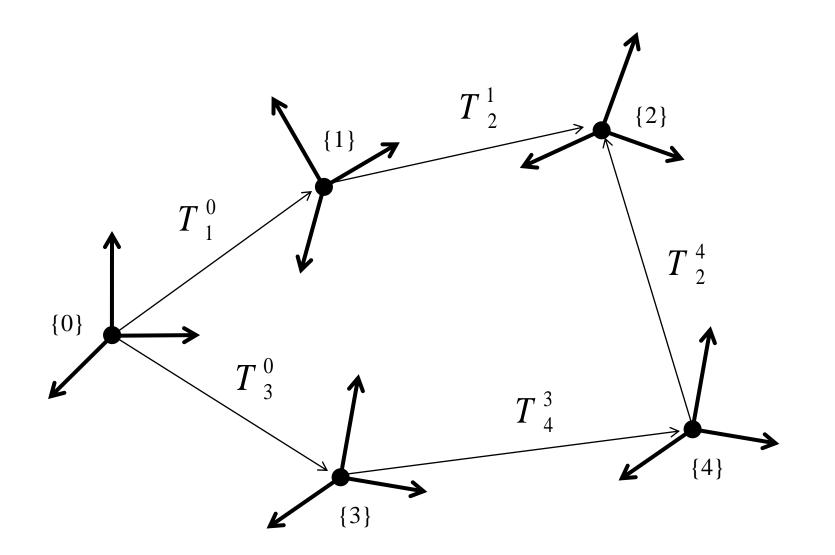
 the inverse of a transformation undoes the original transformation

$$T = \begin{bmatrix} R & d \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

then

▶ if

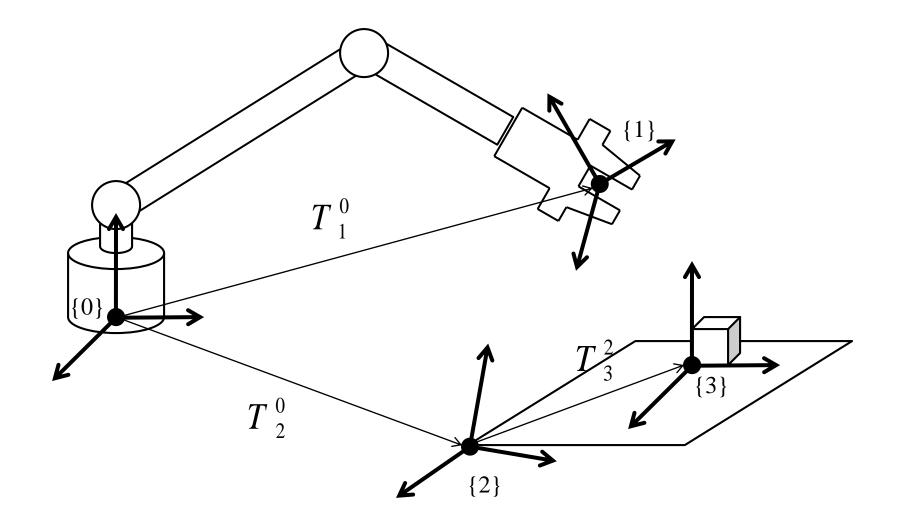
$$T^{-1} = \begin{bmatrix} R^T & -R^T d \\ 0 & 0 & 0 \end{bmatrix}$$



give expressions for:

$$T^{0}_{2}$$

 T^{3}_{4}



how can you find

 $T { 1 \atop 1}$ $T { 2 \atop 2}$ $T { 2 \atop 3}$ $T { 1 \atop 3}$